已知tana,tanb是方程7x2-8x+1=0的两根,则tan[(a+b)/2]=?
问题描述:
已知tana,tanb是方程7x2-8x+1=0的两根,则tan[(a+b)/2]=?
答
先列出2根之和2根之差的式子 再用半角公式 代入相应的值即可
答
设x=tan(A+B)/2
∵tanA+tanB=8/7,tanA*tanB=1/7
∴tan(A+B)=(tanA+tanB)/(1-tanA*tanB)=4/3
利用倍角公式,2x/(1-x^2)=tan(A+B)=4/3,解得x=1/2或-2
答
7x^2-8x+1=0(7x-1)(x-1)=0x1=1/7,x2=1所以设tana=1,tanb=1/7.或者由韦达定理得tana+tanb=8/7,tanatanb=1/7tan(a+b)=(tana+tanb)/(1-tanatanb)=(8/7)/(1-1/7)=4/3.tan(a+b)=2[tan(a+b)/2]/[1-(tan(a+b)/2)^2]设tan(a+...