如图所示,一细线的一端固定于倾角为45°的光滑楔型滑块A的顶端P处,细线的另一端拴一质量为m的小球,当滑块以a=2g的加速度向左运动时,线中拉力T等于多少?
问题描述:
如图所示,一细线的一端固定于倾角为45°的光滑楔型滑块A的顶端P处,细线的另一端拴一质量为m的小球,当滑块以a=2g的加速度向左运动时,线中拉力T等于多少?
答
对于小球是否抛起的临界问题,先抓住临界点求临界加速度:将小球所受的力沿加速度方向和垂直于加速度的方向进行分解,得方程:Tcos45°-Nsin45°=maTsin45°+Ncos45°=mg联立两式得:N=mgcos45°-masin45°当N=0时,...
答案解析:根据牛顿第二定律求出支持力为零时滑块的加速度,从而判断小球是否脱离斜面飘起,再根据平行四边形定则求出拉力的大小.
考试点:牛顿第二定律.
知识点:解决本题的关键知道小球脱离斜面时的临界情况,结合牛顿第二定律进行求解.