如图,已知A、B、C是一条直路上的三点,AB与BC各等于1千米,从三点分别遥望塔M,在A处看见塔在北偏东45方向,在B处看见塔在正东方向,在C处看见塔在南偏东60°方向,求塔到直路ABC的最短距离.

问题描述:

如图,已知A、B、C是一条直路上的三点,AB与BC各等于1千米,从三点分别遥望塔M,在A处看见塔在北偏东45方向,在B处看见塔在正东方向,在C处看见塔在南偏东60°方向,求塔到直路ABC的最短距离.

已知AB=BC=1,∠AMB=45°,∠CMB=30°,∴∠CMA=75°
易见△MBC与△MBA面积相等,
∴AMsin45°=CMsin30°
即CM=

2
AM,记AM=a,则CM=
2
a,
在△MAC中,AC=2,由余弦定理得:4=3a2-2
2
a2cos75°,
∴a2=
4
4−
3
,记M到AC的距离为h,则
2
a2sin75°=2h
得h=
7+5
3
13

∴塔到直路ABC的最短距离为
7+5
3
13

答案解析:根据已知条件求得∠CMA,进而可推断出△MBC与△MBA面积相等,利用三角形面积公式可求得CM和AM的关系,进而在△MAC中利用余弦定理求得a,最后根据三角形面积公式求得答案.
考试点:解三角形的实际应用.
知识点:本题主要考查了解三角形的实际应用.考查了学生对基础知识的综合运用.