已知函数f(x)=x/(1+x^2)的定义域为(-1,1) 证明其单调性

问题描述:

已知函数f(x)=x/(1+x^2)的定义域为(-1,1) 证明其单调性

定义法:
设-11+x^2≥1>0,分式恒有意义
f(x2)-f(x1)=x2/(1+x2²) -x1/(1+x1²)
=[x2(1+x1²)-x1(1+x2²)]/[(1+x1²)(1+x2²)]
=(x2+x1²x2-x1-x1x2²)/[(1+x1²)(1+x2²)]
=[(x2-x1)-x1x2(x2-x1)]/[(1+x1²)(1+x2²)]
=(x2-x1)(1-x1x2)/[(1+x1²)(1+x2²)]
-10
x2>x1 x2-x1>0
(1+x1²)(1+x2²)>0
(x2-x1)(1-x1x2)/[(1+x1²)(1+x2²)]>0
f(x2)>f(x1),函数在区间(-1,1)上单调递增.
导数法:
f'(x)=[x'(1+x²)-x(1+x²)']/(1+x²)²
=(1+x²-2x²)/(1+x²)²
=(1-x²)/(1+x²)²
-10,又(1+x²)²>0
f'(x)>0,函数在区间(-1,1)上单调递增.