求微分方程想x^2dy+(3-2xy)dx=0的通解
问题描述:
求微分方程想x^2dy+(3-2xy)dx=0的通解
答
.这个 答案是:
y[x]=(3*x+C1)/x^2
我用Mathematica 算的
DSolve[y'[x] == (3 - 2 x y[x])/x^2,y[x],x]
结果是:
{{y[x] -> 3/x + C[1]/x^2}}
MATLAB 代码是:
dsolve('Dy=(3-2*x*y)/x^2','x')
答案:
ans =
(3*x+C1)/x^2