基本不等式应用的证明问题2已知a b c是不全相等的正数,求证:a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)>6abc

问题描述:

基本不等式应用的证明问题2
已知a b c是不全相等的正数,求证:a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)>6abc

因为a、b、c是正数由基本不等式有a^2+b^2≥2ab>0b^2+c^2≥2bc>0c^2+a^2≥2ac>0所以a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)≥a*2bc+b*2ac+c*2ab=6abc又因为a、b、c不全相等,所以上面三个式子不能同时成立所以a(b^2+c^2)...