1/4+1/(4+6)+1/(4+6+8)+.../(2+4+6+...+2n)的极限怎样求

问题描述:

1/4+1/(4+6)+1/(4+6+8)+.../(2+4+6+...+2n)的极限怎样求

分母有通项是:2+4+6+...+2n=n(n+1)所以通项是:1/n(n+1)=1/n-1/(n+1)所以:1/2+1/(2+4)+1/(2+4+6)+1/(2+4+6+8)+...+!/(2+4+6+...+2n)=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+.+1/(n-1)-1/n+1/n-1/(n+1)=1-1/(n+1)所以当...