若x^2-(√19/2)x+1=0,则x^4+1/(x^4)等于

问题描述:

若x^2-(√19/2)x+1=0,则x^4+1/(x^4)等于

由x^2-(√19/2)x+1=0,
得x^2+1=(√19/2)x,所以x+1/x=√19/2
x^2+1/x^2=(x+1/x)^2-2=11/4
x^4+1/(x^4)=(x^2+1/x^2)^2-2=89/16