已知平行四边形ABCD中AC与BD交与点O,P是四边形外一点,且∠APC=∠BPD=90°,则APCD是矩形,为什么?我觉得应该是证ABCD是矩形

问题描述:

已知平行四边形ABCD中AC与BD交与点O,P是四边形外一点,且∠APC=∠BPD=90°,则APCD是矩形,为什么?
我觉得应该是证ABCD是矩形

∵EB、DF分别在AB、DC上,ABCD为平行四边形
∴EB//DF
∴∠EBD=∠FDB
又∵点E、F分别是圆O上的点,BD是圆O的直径
∴在△EBD、△FDB中,∠BED=∠DFB=90°
∴∠BED-∠EBD=∠DFB-∠BDF,∠BDE=∠DBF
∴∠EDF=∠FBE
又∵∠EDF、∠FBE和∠BED、∠DFB分别是四边形BFDE的两组内对角且证得这两组内对角分别相等
∴四边形BFDE是平行四边形
2)∵四边形BFDE是平行四边形,∠BED=∠DFB=90°
∴∠EDF=∠FBE=90°
∴平行四边形BFDE是菱形
∴对角线BD、EF垂直
∴BD绕点O顺时针旋转90时,平行四边形为菱形

09-p0[p[y8i76yu

hhjlooip'[o
'uo;..pp;io[p gyu896ol 08

是证ABCD为矩形.

1)证明:
∵EB、DF分别在AB、DC上,ABCD为平行四边形
∴EB//DF
∴∠EBD=∠FDB
又∵点E、F分别是圆O上的点,BD是圆O的直径
∴在△EBD、△FDB中,∠BED=∠DFB=90°
∴∠BED-∠EBD=∠DFB-∠BDF,∠BDE=∠DBF
∴∠EDF=∠FBE
又∵∠EDF、∠FBE和∠BED、∠DFB分别是四边形BFDE的两组内对角且证得这两组内对角分别相等
∴四边形BFDE是平行四边形
2)∵四边形BFDE是平行四边形,∠BED=∠DFB=90°
∴∠EDF=∠FBE=90°
∴平行四边形BFDE是菱形
∴对角线BD、EF垂直
∴BD绕点O顺时针旋转90时,平行四边形为菱形
如果有证得不对的地方,请指正

证明:连接EO
在平行四边形ABCD 中,AO=CO,BO=DO
所以,在直角三角形BED中,EO=BO=DO
在直角三角形ACE中,EO=AO=CO
所以,AO=CO=BO=DO
又因为四边形ABCD为平行四边形
所以平行四边形ABCD为矩形