已知函数y=ax3+3x2-x+1在R上是减函数,求实数a的取值范围
问题描述:
已知函数y=ax3+3x2-x+1在R上是减函数,求实数a的取值范围
答
求导数,令导函数在R上小于0就解出a范围
答
这道题先求原函数的导函数
y一撇=3ax2+3x-1
这个导函数的函数值指的是原函数的切线斜率.
因为原函数在实数范围内都是单调减函数,所以原函数的切线斜率一定小于0,也就是导函数的函数值一定小于0.
所以导函数这样一个二次函数的图像,一定是一个开口向下、且与x轴没有焦点的抛物线.所以列出不等式:3a<0,且判别式=9-4*3a*(-1)化简得a