点p(x,y)是直角坐标平面xoy上的一个动点,点p到直线x=8的距离等于它到点M(2,0)的距离1 动点P的轨迹C的方程,并指出是何种圆锥曲线2 曲线C关于直线x=8的对称轴D的方程及曲线D的焦点坐标

问题描述:

点p(x,y)是直角坐标平面xoy上的一个动点,点p到直线x=8的距离等于它到点M(2,0)的距离
1 动点P的轨迹C的方程,并指出是何种圆锥曲线
2 曲线C关于直线x=8的对称轴D的方程及曲线D的焦点坐标

1 动点P的轨迹C的方程,并指出是何种圆锥曲线√((x-2)^2+y^2)=|x-8|(x-2)^2+y^2=(x-8)^2y^2=(x-8)^2-(x-2)^2=-12x+60这是抛物线2 曲线C关于直线x=8的对称轴D的方程及曲线D的焦点坐标是指直线x=8作为对称轴时的曲线D吧...