设抛物线y2=2px(p>0)上一点(4,t)到焦点的距离为5.1,求p和t.2,若直线y=2x+b被抛物线截得的弦长为3根号5,求b3,求抛物线上的动点m到定点A(m,0)的最短距离
设抛物线y2=2px(p>0)上一点(4,t)到焦点的距离为5.1,求p和t.
2,若直线y=2x+b被抛物线截得的弦长为3根号5,求b
3,求抛物线上的动点m到定点A(m,0)的最短距离
1.根据抛物线定义,到焦点距离等于到准线距离(x+p/2),4+p/2=5,p=2,y²=4x——①
(4,t)带入①,t²=16,t=±4
2.再将y=2x+b代入①式得:(2x+b)²=4x;化简得4x²+4(b-1)x+b²=0
抛物线弦长︱AB︱=(√5)√[(x₁+x₂)²-4x₁x₂]=(√5)√[(b-1)²-b²]=(√5)√(-2b+1)=3√5
b=-1,或b=2,√(-2b+1)有意义,b≤1/2,因此b=1
3.当m<2时,A点在抛物线焦点左边,此时,动点M为原点时,距离最短,d=|m|
当m≥2时,A与M连线与M点的切线垂直时,此时,距离最短
y2=4x求导,2yy'=4,y'=2/y,AM斜率,y/(y²/4-m)
则y/(y²/4-m)·2/y=-1
y²=4(m-2),d=√[(y-0)²+(y²/4-m)²]=2√(m-1)
设抛物线y²=2px(p>0)上一点(4,t)到焦点的距离为5. (1),求p和t;(2),若直线y=2x+b被抛物线截得的弦长为3√5,求b;(3),求抛物线上的动点M到定点A(m,0)的最短距离
(1) 焦点(p/2,0);点(4,t)到焦点的距离=√[(4-P/2)²+t²]=5,即有:
(4-p/2)²+t²=25.(1)
t²=8p.(2)
(2)代入(1)式并化简得p²+16p-36=(p-2)(p+18)=0,故得p=2,t=4.
(2).将p=2代入抛物线方程得 y²=4x.(3)
再将y=2x+b代入(3)式得:(2x+b)²=4x;展开化简得4x²+4(b-1)x+b²=0.
设直线与抛物线的交点为A(x₁,y₁),B(x₂,y₂),则;
弦长︱AB︱=(√5)√[(x₁+x₂)²-4x₁x₂]=(√5)√[(b-1)²-b²]=(√5)√(-2b+1)=3√5
化简得(1-2b)²=9,即有4b²-4b-8=0,b²-b-2=(b-2)(b+1)=0,故b₁=2(舍去);b₂=-1.
(如果b=2,则直线y=2x+2与抛物线无交点,因为方程4x²+4x+4=0的判别式Δ