已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP垂直OQ(O为圆心).求圆心坐标和半径……
问题描述:
已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OP垂直OQ(O为圆心).求圆心坐标和半径……
答
已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且PQ垂直于OQ由“PQ垂直于OQ”,PQ斜率(-1/2)可求出OQ斜率为2。过原点、斜率为2
答
该圆圆心坐标和半径 答案:(-1/2,3),r=5/2
将圆方程化简为标准式有:
[x+(1/2)]^2+(y-3)^2=(37-4m)/4……………………………(1)
所以,圆心坐标为(-1/2,3)
联立直线与圆方程得到:
x^2+x+y^2-6y+m=0
x+2y-3=0
===> (2y-3)^2-(2y-3)+y^2-6y+m=0
===> 4y^2-12y+9-2y+3+y^2-6y+m=0
===> 5y^2-20y+(m+12)=0
===> y1+y2=4,y1y2=(m+12)/5
===> x1x2=(-2y1+3)(-2y2+3)=4y1y2-6(y1+y2)+9=4(m+12)/5-15
已知OP⊥OQ
则,Kop*Koq=-1
即:(y1/x1)*(y2/x2)=-1
===> y1y2+x1x2=0
===> (m+12)/5+4(m+12)/5-15=0
===> m+12-15=0
===> m=3
代入(2)式就有:
r^2=(37-4m)/4=25/4
所以,r=√(25/4)=5/2
答
(x+1/2)^2+(y-3)^2=37/4-m
圆心坐标(-0.5,3)
圆心到直线距离=(-0.5+6-3)/√5
=√5/2
因为OP垂直OQ
所以圆心到直线距离的√2倍就是半径
半径=√5/2*√2=√10/2