动圆c与定圆c1:x^2+(y-4)^2=64内切,与定圆C2:x^2+(y+4)^2=4外切,求c的轨迹方程[在线等,急,谢了.求的C的轨迹是圆心点C的轨迹,不是圆方程
问题描述:
动圆c与定圆c1:x^2+(y-4)^2=64内切,与定圆C2:x^2+(y+4)^2=4外切,求c的轨迹方程[在线等,急,谢了.
求的C的轨迹是圆心点C的轨迹,不是圆方程
答
设c(x,y),圆c半径为r (r>0)
由于动圆c与定圆c1:x^2+(y-4)^2=64内切
则有:c(x,y)与c1(0,4)距离为|r-8|
即:(x-0)^2+(y-4)^2=(r-8)^2 ---(1)
又因为:c定圆c2:x^2+(y+4)^2=4外切
则有:c(x,y)与c2(0,-4)距离为r+2
即:(x-0)^2+(y+4)^2=(r+2)^2 ---(2)
(2)-(1)得:
(y+4)^2-(y-4)^2=(r+2)^2-(r-8)^2
则:16y=20r
则:r=4y/5 ---(3)
(3)代入(2)并整理得:
25x^2+9y^2+120y+300=0
即c的轨迹方程:25x^2+9y^2+120y+300=0
答
此题很明显点C的轨迹是椭圆圆c1:x²+(y-4)²=64,圆心(0,4),半径为8圆c2:x²+(y+4)²=4,圆心(0,-4)半径为2圆心c设为(x,y)半径设为rc到定点(0,-4)和(0,4)的距离之和=8-r+2+r=10符合椭圆定...