设数列{an}是等差数列,公差d≠0,若ak,am,ap三个数成等比数列,则其公比为A.(m-p)/(k-p) B.(p-m)/(m-k) C.(m-k)/(m-p) D.(k-m)/(k-p)
问题描述:
设数列{an}是等差数列,公差d≠0,若ak,am,ap三个数成等比数列,则其公比为
A.(m-p)/(k-p) B.(p-m)/(m-k) C.(m-k)/(m-p) D.(k-m)/(k-p)
答
用特殊数列的方法就可以了,很快的,设an为1,2,3....ak=1,am=2,ap=4,(k=1,m=2,p=4)则公比为2,再看A,B,C,D四个选项,一一对应可知B为正确答案!
答
ap/am=am/ak
(ap-am)/am=(am-ak)/ak
am/ak=(ap-am)/(am-ak)=(p-m)d/((m-k)d)=(p-m)/(m-k)