已知x>0,y>0,且2x+3y-4xy=0,求3x+2y的最小值

问题描述:

已知x>0,y>0,且2x+3y-4xy=0,求3x+2y的最小值

用拉哥朗日乘子法:设乘子为t,
F(x,y,t)=3*x+2*y+t(2*x+3*y-4*x*y)
对x,y,t分别求导并等于0,F'x=3+2t-4ty=0;F'y=2+3t-4tx=0,F't=2*x+3*y-4*x*y=0,三式联立解得:x=5/4,y=5/4,t=1,另解舍
则3x+2y=(3+2)*5/4=25/4,这就是最小值

2x+3y-4xy=0(4y-2)x=3yx>0,y>0,因此4y-2>0 y>1/2x=3y/(4y-2)3x+2y=9y/(4y-2) +2y=(8y²+5y)/(4y-2)=[8y²-4y+9y -(9/2) +(9/2)]/(4y-2)=2y+ 9/4 +(9/2)/(4y-2)=(2y-1) +(9/4)[1/(2y-1)] +13/4y>1/2 2y-1>0,...