设f(x)在点x=0处可导,且f(0)=0,f'(0)不等于0又F(x)在点x=0处亦可导.证明F[f(x)]在点x=0处可导
问题描述:
设f(x)在点x=0处可导,且f(0)=0,f'(0)不等于0又F(x)在点x=0处亦可导.证明F[f(x)]在点x=0处可导
答
证明:(F(f(t))-F(0))/t=((F(f(t))-F(0))/f(t))*(f(t)/t)①,由于f在0可导,故在0连续。又由于f'(0)≠0,即lim(t趋于0)f(t)/t≠0,设它=a,则存在0的某个去心邻域U(0,δ),使得其中任意t,有|f(t)/t-a|<a/2,可得出f(t)/t在此邻域恒不为0,f(t)恒不为0。又f在0连续,故①式t趋于0可取极限为(设f(t)=s):lim(s趋于0)(F(s)-F(0))/s乘以lim(t趋于0)f(t)/t=F‘(0)f’(0),即F[f(x)]在0可导.
f‘(0)≠0很重要啊,它保证求极限时分母不为0,你看我的回答了吗······
答
F(x)在点x=0处可导,即当x→0时,lim(F(x)-F(0))/x 存在
由于f(x)在点x=0处可导,必定在x=0处连续,当x→0时,limf(x)=f(0)=0
当x→0时:lim(F[f(x)]-F[f(0)])/x=lim{(F[f(x)]-F[f(0)])/f(x)}{[f(x)-f(0)}/x=F'(0)f'(0)