设等差数列{an}的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论有:设等比数列{bn}的前n项积为Tn,则T4,______,______,T16T12成等比数列.

问题描述:

设等差数列{an}的前n项和为Sn,则S4,S8-S4,S12-S8,S16-S12成等差数列.类比以上结论有:设等比数列{bn}的前n项积为Tn,则T4,______,______,

T16
T12
成等比数列.

设等比数列{bn}的公比为q,首项为b1
则T4=b14q6,T8=b18q1+2++7=b18q28
T12=b112q1+2++11=b112q66

T8
T4
=b14q22
T12
T8
=b14q38
即(
T8
T4
2=
T12
T8
•T4,故T4
T8
T4
T12
T8
成等比数列.
故答案为:
T8
T4
T12
T8

答案解析:由于等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,因此当等差数列依次每4项之和仍成等差数列时,类比到等比数列为依次每4项的积的商成等比数列.下面证明该结论的正确性.
考试点:类比推理;等比数列的性质.
知识点:本题主要考查类比推理,类比推理一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).