已知x(x-1)-(x的2次方-y)=-2,求(x的2次方+y的2次方/2)-xy

问题描述:

已知x(x-1)-(x的2次方-y)=-2,求(x的2次方+y的2次方/2)-xy

(x的2次方+y的2次方/2)中的/2是否包括x的2次方

此题表述有错误,应为:已知x(x-1)-(x^2-y)= -2 求(x^2+y^2)/2-xy的值。
x(x-1)-(x^2-y)= -2
x^2-x-x^2+y= -2
x-y=2
则(x^2+y^2)/2-xy
=x^2/2+y^2/2-2xy/2
=(x-y)^2/2
=4/2
=2

此题应为:已知x(x-1)-(x^2-y)= -2 求(x^2+y^2)/2-xy的值.
由 x(x-1)-(x^2-y)= -2
展开 得 x^2-x-x^2+y= -2
x-y=2
所以 (x^2+y^2)/2-xy
=x^2/2+y^2/2-2xy/2
=(x-y)^2/2
将x-y=2整体代入
得 =(x-y)^2/2
=4/2
=2

x(x-1)-(x^2-y)=-2
x^2-x-x^2+y=-2
x-y=2
(x^2+y^2)/2-xy
=[(x-y)^2]/2
=2