已知函数f(x)=a^x/(a^x+根号a),(1)证明:若x1+x2=1,则f(x1)+f(x2)=1 (2)求f(1/10)+f(2/10)+··f(9/10)值

问题描述:

已知函数f(x)=a^x/(a^x+根号a),(1)证明:若x1+x2=1,则f(x1)+f(x2)=1 (2)求f(1/10)+f(2/10)+··f(9/10)

1.不妨设a=1,则f(x1)+f(x2)=a^x1/(a^x1+根号a)+a^x2/(a^x2+根号a)=1/2+1/2=1
2.不妨设a=1,同理f(1/10)+f(2/10)+··f(9/10)=1/2+1/2+.......+1/2=1/2*9=9/2=4.5

(1)
f(x1)=a^x1/(a^x1+a^(1/2))
f(x2)=f(1-x1)=a^(1-x1)/(a^(1-x1)+a^(1/2))
=a/(a+a^(1/2) *a^x1)
=a^(1/2)/(a^x1+a^(1/2))
所以:f(x1)+f(x2)=(a^x1+a^(1/2))/(a^x1+a^(1/2))=1
(2)
f(1/10)+f(2/10)+··f(9/10)
=[f(1/10)+f(9/10)]+[f(2/10)+f(8/10)]+[f(3/10)+f(7/10)]+[f(4/10)+f(6/10)]+f(5/10)
=1+1+1+1+(1/2)
=4.5