已知函数f(x)=cos(2π-x) cos(π/2-x)-sin^2x (1)求函数f(x)的最小正周期(2)当x∈[-π/8,3/8π]时,求函数f(x)的值域
问题描述:
已知函数f(x)=cos(2π-x) cos(π/2-x)-sin^2x (1)求函数f(x)的最小正周期
(2)当x∈[-π/8,3/8π]时,求函数f(x)的值域
答
77
答
1、f(x)=cos(2π-x) cos(π/2-x)-sin^2x
=cosx*sinx+1/2(1-2sin^2x )-1/2
=1/2sin2x+1/2cos2x-1/2
=√2/2(sin2xcosπ/4+cos2xsinπ/4)-1/2
=√2/2sin(2x+π/4)-1/2
所以函数f(x)的最小正周期为π
2、当x∈[-π/8,3/8π]时,f(x)最小值为x=-π/8或3/8π时,f(x)=-1/2
x=π/8时f(x)最大值为√2/2-1/2
所以当x∈[-π/8,3/8π]时,函数f(x)的值域为[-1/2,√2/2-1/2]
答
1、f(x)=cos(2π-x) cos(π/2-x)-sin^2x =-cosxsinx-sin^2x=-½sin2x-(1-cos2x)/2=-1/2sin2x+1/2cos2x-1/2= - √2/2sin(2x-π/4)-1/2所以函数f(x)的最小正周期为π2、当x∈[-π/8,3π/8]时,-π/2≤2x-π/4≤π...