(1+2x-4/x²-x-2)÷x+3/x²-1 先化简再求值 X=根号3

问题描述:

(1+2x-4/x²-x-2)÷x+3/x²-1 先化简再求值 X=根号3

1+(2x-4)/(x^2-a-2)]/[(x+3)/(x^2-1)]
={1+2(x-2)/[(x-2)(x+1)]}(x^2-1)/(x+3)
=[1+2/(x+1)](x+1)(x-1)/(x+3)
=[x+1+2](x-1)/(x+3)
=x-1
x=√3 (根3)
原式=√3-1.