用向量法证三垂线定理.其中三垂线定理内容:设直线a在平面A内,直线b为平面A的一条斜线,b在A内的射影为c,a⊥c,求证:a⊥b
问题描述:
用向量法证三垂线定理.其中三垂线定理内容:设直线a在平面A内,直线b为平面A的一条斜线,b在A内的射影为c,a⊥c,求证:a⊥b
答
就用直线a,b,c作为它们各自的向量啦.
设直线b上一点P到面的垂足为Q(它当然在直线c上了).
∵向量b=向量PQ+向量c,∴向量a点乘向量b=a·(PQ+c)=a·PQ+a·c.
又∵a⊥PQ,a⊥c,∴a·PQ=0,a·c=0,
∴向量a点乘向量b=0,
故a⊥c.证毕.