求解a^m+1*a^m+n=a^8,且m-2n=1,求m,n的值2*(-x^3)^2*x^3-(3x^3)^3+(-5x)^2*x^7
问题描述:
求解a^m+1*a^m+n=a^8,且m-2n=1,求m,n的值
2*(-x^3)^2*x^3-(3x^3)^3+(-5x)^2*x^7
答
a^m+1*a^m+n=a^8
a^(m+1+m+n)=a^8
2m+n+1=8
m-2n=1
解方程组
m=3,n=1
2*(-x^3)^2*x^3-(3x^3)^3+(-5x)^2*x^7
=2x^6*x^3-27x^9+25x^2*x^7
=2x^9-27x^9+25x^9
=0
答
a的m+1次方乘以a的m+n次方
=a^(m+1+m+n)
=a^(2m+n+1)=a^8
2m+n+1=8
m-2n=1
m=3
n=1