解方程7/(x+x2)-3/(x-x2)=6/(x2-1)后面的2是平方哦
问题描述:
解方程7/(x+x2)-3/(x-x2)=6/(x2-1)
后面的2是平方哦
答
答:
7/(x+x^2)-3/(x-x^2)=6/(x^2-1)
7/[x(x+1)]-3/[x(1-x)]=6/[(x-1)(x+1) 分母通分有:
7(x-1)/[x(x+1)(x-1)]+3(x+1)/[x(x+1)(x-1)]=6x/[x(x+1)(x-1)]
所以:
7(x-1)+3(x+1)=6x
7x-7+3x+3=6x
10x-4=6x
10x-6x=4
4x=4
x=1
经检验,x=1是方程的增根
所以:原方程无解
答
两边乘以x(x+1)(x-1)得
7(x-1)+3(x+1)=6x
7x-7+3x+3=6x
4x=4
x=1
检验:x=1是增根
∴方程无解
答
7/(x+x2)-3/(x-x2)=6/(x2-1)
两边同乘以x(x+1)(x-1),得
7(x-1)+3(x+1)=6x
7x-7+3x+3=6x
10x-6x=3-7
4x=-4
x=-1
经检验x=-1是增根,所以方程无解.