抛物线y²=-8x,过点M(-1,1)引抛物线的弦,使M为弦的中点,求弦所在的直线的方程,并求弦长.

问题描述:

抛物线y²=-8x,过点M(-1,1)引抛物线的弦,使M为弦的中点,求弦所在的直线的方程,并求弦长.

弦AB
yA+yB=2yM=2*1=2
(yA)^2-(yB)^2=(-8xA)-(-8xB)
(yA+yB)*(yA-yB)=-8(xA-xB)
k(AB)=(yA-yB)/(xA-xB)=-8/(yA+yB)=-8/2=-4
AB:y=-4x-3
x=(-3-y)/4
y^2=-8x=-8*(-3-y)/4
y^2-2y-6=0
yA*yB=-6
(yA-yB)^2=(yA+yB)^2-4yA*yB=2^2-4*(-6)=28
(xA-xB)^2=(yA-yB)^2/16
AB^2=(xA-xB)^2+(yA-yB)^2=(1+1/16)*(yA-yB)^2=(17/16)*28=119/4
|AB|=0.5√119

直线方程为y=k(x+1)+1,代入抛物线方程,得k^2+(2k^2+2k+8)x+(k+1)^2=0交点为两个根,中点为M,则(x1+x2)/2=-1=-(k^2+k+8)/k^2解得,k=-4所以,y=-4x-3根据x1+x2=-2,x1*x2=9/16可求,|x1-x2|=1/2*根号七因为斜率为-4,所以,...