设x∈[0,π3],求函数y=cos(2x-π3)+2sin(x-π6)的最值.

问题描述:

设x∈[0,

π
3
],求函数y=cos(2x-
π
3
)+2sin(x-
π
6
)的最值.

y=cos(2x-

π
3
)+2sin(x-
π
6
)=-2[sin(x-
π
6
)-
1
2
]2+
3
2

∵x∈[0,
π
3
],-
1
2
≤sin(x-
π
6
)≤
1
2

∴当sin(x-
π
6
)=
1
2
,ymax=
3
2

当sin(x-
π
6
)=-
1
2
,ymin=-
1
2

答案解析:利用两角和公式和二倍角公式对函数的解析式化简整理,然后利用正弦函数的性质求得函数的最大和最小值.
考试点:三角函数的最值.
知识点:本题主要考查了利用两角和公式和二倍角公式化简求值,正弦函数的基本性质.考查了考生对三角函数基础知识点综合运用.