已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=2,求BC的值.

问题描述:

已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.

(1)求证:PD是⊙O的切线;
(2)若∠CAB=120°,AB=2,求BC的值.

(1)证明:连接AP,OP,
∵AB=AC,
∴∠C=∠B,
又∵OP=OB,∠OPB=∠B,
∴∠C=∠OPB,
∴OP∥AD;
又∵PD⊥AC于D,
∴∠ADP=90°,
∴∠DPO=90°,
∵以AB为直径的⊙O交BC于点P,
∴PD是⊙O的切线.
(2)∵AB是直径,
∴∠APB=90°;
∵AB=AC=2,∠CAB=120°,
∴∠BAP=60°,
∴BP=

3

∴BC=2
3

答案解析:(1)连接OP,要证明PD是⊙O的切线只要证明∠DPO=90°即可;
(2)连接AP,根据已知可求得BP的长,从而可求得BC的长.
考试点:切线的判定.
知识点:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.