如图,将Rt△ABC绕直角顶点C旋转至Rt△A′B′C,并使B′,B,A′同在一直线上,若∠A=α,则旋转角度∠ACA′是( )A. αB. 32αC. 2αD. 3α
问题描述:
如图,将Rt△ABC绕直角顶点C旋转至Rt△A′B′C,并使B′,B,A′同在一直线上,若∠A=α,则旋转角度∠ACA′是( )
A. α
B.
α3 2
C. 2α
D. 3α
答
∵Rt△ABC中,∠A=α,
∴∠ABC=90°-α,
∵将Rt△ABC绕直角顶点C旋转至Rt△A′B′C,并使B′,B,A′同在一直线上,
∴∠B′=∠ABC=90°-α,BC=B′C,
∴∠CBB′=∠B′=90°-α,
∴∠BCB′=180°-∠B′-∠CBB′=2α,
∴∠ACA′=∠BCB′=2α.
故选C.
答案解析:由Rt△ABC中,∠A=α,即可求得∠B的度数,又由将Rt△ABC绕直角顶点C旋转至Rt△A′B′C,并使B′,B,A′同在一直线上,根据旋转的性质,可得∠B′=∠ABC=90°-α,BC=B′C,继而求得旋转角∠BCB′的度数,则可求得答案.
考试点:旋转的性质.
知识点:此题考查了旋转的性质、等腰三角形的性质以及三角形内角和定理.此题难度不大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.