已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+3,过A作AE⊥CD,垂足为E,G,F分别为AD,CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.(Ⅰ)求证:BC⊥平面CDE;(Ⅱ)求证:FG∥平面BCD;(Ⅲ)在线段AE上找一点R,使得面BDR⊥面DCB,并说明理由.

问题描述:

已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+

3
,过A作AE⊥CD,垂足为E,G,F分别为AD,CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.

(Ⅰ)求证:BC⊥平面CDE;
(Ⅱ)求证:FG∥平面BCD;
(Ⅲ)在线段AE上找一点R,使得面BDR⊥面DCB,并说明理由.

(I)如下图所示:由已知得:DE⊥AE,DE⊥EC∴DE⊥面ABCE.∴DE⊥BC,又BC⊥CE,∴BC⊥面DCE(II)取AB中点H,连接GH,FH,∴GH∥BD,FH∥BC,∴GH∥面BCD,FH∥面BCD.∴面FHG∥面BCD,∴GF∥面BCD.(III)分析可...
答案解析:(I)由已知中AE⊥CD,垂足为E,DE⊥EC.根据线面垂直的判定定理,我们可得DE⊥面ABCE.由线面垂直的定义,可得DE⊥BC,又由BC⊥CE,由线面垂直的判定定理,我们可以得到BC⊥平面CDE;
(Ⅱ)取AB中点H,连接GH,FH,由三角形中位线定理,我们易得到GH∥BD,FH∥BC,由面面平行的判定定理得到面FHG∥面BCD,再由面面平行的定义,得到FG∥平面BCD;
(Ⅲ)取BD中点Q,连接DR、BR、CR、CQ、RQ,根据已知中AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+

3
,我们易△BDR,求出RQ,解△CRQ,可得CQ⊥RQ,又由等腰△CBD中,Q为底边BD的中点,得到CQ⊥BD,进而根据线面垂直判定定理,及面面垂直判定定理,得到结论.
考试点:平面与平面垂直的判定;直线与平面平行的判定;直线与平面垂直的判定.
知识点:本题考查的知识点是平面与平面垂直的判定,直线与平面平行的判定,直线与平面垂直的判定,熟练掌握空间直线与平面之间平行及垂直的判定定理、性质定理、定义、几何特征是解答此类问题的关键.