菱形的周长为40cm,两个相邻内角的度数的比为1:2,则菱形的面积为 ___ cm.

问题描述:

菱形的周长为40cm,两个相邻内角的度数的比为1:2,则菱形的面积为 ___ cm.

如图,AB=40÷4=10cm,∵两个相邻内角的度数的比为1:2,∴∠BAD=11+2×180°=60°,∴△ABD是等边三角形,∴BD=AB=10cm,∴BO=12×10=5cm,在Rt△ABO中,AO=AB2-BO2=102-52=53cm,∴AC=2AO=2×53=103cm,∴菱形的...
答案解析:先根据菱形的四条边都相等求出菱形的边长,然后根据邻角互补求出菱形的一个内角为60°,从而得到较短的对角线与菱形的两边构成的三角形是等边三角形,再求出两对角线的长度,然后根据菱形的面积等于对角线乘积的一半进行计算即可求解.
考试点:菱形的性质.
知识点:本题考查了菱形的对角线互相垂直平分的性质,以及菱形的四条边都相等的性质,根据度数求出以较短的对角线BD为边的三角形是等边三角形是解题的关键.