已知函数f(x)=x2+mx+nlnx(x>0,实数m,n为常数).若n+3m2=0(m>0),且函数f(x)在x∈[1,+∞)上的最小值为0,求m的值.
问题描述:
已知函数f(x)=x2+mx+nlnx(x>0,实数m,n为常数).若n+3m2=0(m>0),且函数f(x)在x∈[1,+∞)上的最小值为0,求m的值.
答
(1)当n+3m2=0时,f(x)=x2+mx-3m2lnx.
则f′(x)=2x+m−
=3m2
x
=2x2+mx−3m2
x
.(2x+3m)(x−m) x
令f'(x)=0,得x=−
(舍),x=m.3m 2
①当m>1时,
∴当x=m时,fmin(x)=2m2-3m2lnm.
令2m2-3m2lnm=0,得m=e
.2 3
②当0<m≤1时,f'(x)≥0在x∈[1,+∞)上恒成立,f(x)在x∈[1,+∞)上为增函数,当x=1时,fmin(x)=1+m.
令m+1=0,得m=-1(舍).
综上所述,所求m为m=e
.2 3