计算定积分:§0-4 dx/(1+根号x)
问题描述:
计算定积分:§0-4 dx/(1+根号x)
答
28/3
答
§0-4 dx/(1+根号x) u = 根号x,u^2 = x,dx = 2udu,x = 0,u = 0,x = 4,u = 2§0-4 dx/(1+根号x)= §0-2 1/(1+u) *2udu = §0-2 (2 - 2/(1+u)) du = [2u - 2ln(1+u)] _0-2 = 4 - 2ln3