7名同学按下列要求排队,分别计算有多少种不同的排法:(1)站成一排,甲与已不相邻,乙与丙必须相邻.

问题描述:

7名同学按下列要求排队,分别计算有多少种不同的排法:(1)站成一排,甲与已不相邻,乙与丙必须相邻.

解法如下:
先计算乙与丙在一起的挨着的情况:A6(6)*2.A代表全排列,乙和丙看成一个人,一共就是6个人,然后乙丙有顺序,就乘以2.
再计算甲乙丙挨着的情况:A5(5)*2.同理,甲乙丙看成一个人,则是五个人进行全排列,乘以2是因为顺序只能是甲乙丙或者丙乙甲.要满足甲乙挨着,同时乙丙挨着.
然后第一种情况减去第二种情况=(甲乙不挨着,乙丙挨着的情况).
6*5*4*3*2*2-5*4*3*2*2=1440-240=1200