已知函数f(x)满足xf(x)=b+cf(x),b≠0,f(2)=-1,且f(1-x)=-f(x+1)对两边都有意义的任意 x都成立 (1)求f(x)的解析式及定义域 (2)写出f(x)的单调区间,并用定义证明在各单
问题描述:
已知函数f(x)满足xf(x)=b+cf(x),b≠0,f(2)=-1,且f(1-x)=-f(x+1)对两边都有意义的任意 x都成立
(1)求f(x)的解析式及定义域
(2)写出f(x)的单调区间,并用定义证明在各单调区间上是增函数还是减函数?
答
(1)由xf(x)=b+cf(x),b≠0,∴x≠c,得f(x)=
,b x−c
由f(1-x)=-f(x+1),得
=-b 1−x−c
,解得c=1,b x+1−c
由f(2)=-1,得-1=
,解得b=-1,b 2−1
∴f(x)=
=−1 x−1
,1 1−x
∵1-x≠0,∴x≠1,即f(x)的定义域为{x|x≠1}.
(2)f(x)的单调区间为(-∞,1),(1,+∞)且都为增区间,
证明:当x∈(-∞,1)时,设x1<x2<1,
则1-x1>0,1-x2>0,
∴f(x1)-f(x2)=
-1 1−x1
=1 1−x2
,
x1−x2
(1−x1)(1−x2)
∵1-x1>0,1-x2>0,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),
∴f(x)在(-∞,1)上单调递增.同理f(x)在(1,+∞)上单调递增.