等差数列{an}中,a3+a 5=12,前6项为30,则a2=_.

问题描述:

等差数列{an}中,a3+

a  5
=12,前6项为30,则a2=______.

由a3+a5=2a4=12,可得:a4=a1+3d=6①,
又前6项为30,∴S6=6a1+15d=30②,
②-①×5得:a1=0,
将a1=0代入①得:d=2,
则a2=a1+d=2.
故答案为:2