yy"=(y')^2-(y')^3,y(1)=1,y'(1)=-1
问题描述:
yy"=(y')^2-(y')^3,y(1)=1,y'(1)=-1
答
令p=y',则y"=pdp/dy 代入原方程:ypdp/dy=p²-p^3dp/(p-p²)=dy/ydp[1/p+1/(1-p)]=2dy/y积分:ln|p/(1-p)|=2ln|y|+C1即p/(1-p)=Cy²代入y(1)=1,y'(1)=-1,得:-1/(1+1)=C,得:c=-1/2即p/(1-p)=-y²/2...