等差数列{an}中a2=8,S6=66.设bn=2/[(n+1)an],Tn=b1+b2+…+bn,

问题描述:

等差数列{an}中a2=8,S6=66.设bn=2/[(n+1)an],Tn=b1+b2+…+bn,

S6=3(a2+a5) 所以a5=14d=(a5-a2)/3=2an=a2+(n-2)d=2n+4=2(n+2)bn=1/[(n+1)(n+2)]=1/(n+1) - 1/(n+2)Tn=1/2-1/3+1/3-1/4+1/4-1/5+……+1/(n+1) - 1/(n+2)=1/2 - 1/(n+2)