已知tan(π-α)=2,(sin^2α-2sincosα-cos^2α)/(4cos^2α-3sin^2α+1)?

问题描述:

已知tan(π-α)=2,(sin^2α-2sincosα-cos^2α)/(4cos^2α-3sin^2α+1)?

tan(π-α)=-tanα=2
tanα=-2
由万能公式得出:
sin2α=2tanα/(1+tan^α)=2*(-2)/(1+2^)=-4/5
cos2α=(1-tan^α)/(1+tan^α)=(1-2^)/(1+2^)=-3/5
原式分子=-2sinαcosα-(cos^α-sin^α)=-sin2α-cos2α
原式分母=4*(1+cos2α)/2 - 3*(1-cos2α)/2 +1
=2+2cos2α-(3/2)+(3/2)cos2α+1
=(3/2)+(7/2)cos2α
于是原式=(-sin2α-cos2α)/[(3+7cos2α)/2]
代入sin2α和cos2α的值:
最后求得原式=-7/3