1^2-2^2+3^2-4^+...+105^2-106^2=

问题描述:

1^2-2^2+3^2-4^+...+105^2-106^2=

上式等于:
=(1^2 + 2^2 + 3^2 + ……+106^2) - 2 * (2^2 + 4^2 + …… + 106^2)
=106 * 107 * 213/6 - 2 * 2^2 * (1^2 + 2^2 + ……+ 53^2)
=402641 - 8 * (53 * 54 * 107/6)
=402641 - 408312
= -5671