设x≠0,化简:﹙1/x的m-n次方+1﹚+﹙1/x的n-m次方+1﹚
问题描述:
设x≠0,化简:﹙1/x的m-n次方+1﹚+﹙1/x的n-m次方+1﹚
答
﹙1/x的m-n次方+1﹚+﹙1/x的n-m次方+1﹚
=1/(X^m-n+1)+X^m-n/(X^m-n+1)
=(X^m-n+1)/(X^m-n+1)
=1为什么1/x的n-m次方+1会等于X^m-n/(X^m-n+1)1/x的n-m次方+1r的分子分母同时乘以x^(m-n)