求(1-x)+(1-x)^2+(1-x)^3+…+(1-x)^50展开式中x^4的系数
问题描述:
求(1-x)+(1-x)^2+(1-x)^3+…+(1-x)^50展开式中x^4的系数
答
x[(1-x)+(1-x)^2+(1-x)^3+…+(1-x)^50]=[1-(1-x)]*[1+(1-x)+(1-x)^2+(1-x)^3+…+(1-x)^50-1]=1-(1-x)^51-x=1-x+(x-1)^51所以要算原式中x^4的系数,只要算上式中x^5的系数:C(51,46)*(-1)^46=C(51,5)=2349060...