如图,已知矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F,FG∥DA与AB交于点G. 求证:(1)BC=BF;(2)GB•DC=DE•BC.

问题描述:

如图,已知矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F,FG∥DA与AB交于点G.
求证:(1)BC=BF;(2)GB•DC=DE•BC.

证明:(1)∵∠BFC=∠BDC+∠DCF,∠BCF=∠BCE+∠ECF.四边形ABCD为矩形.
∴∠BDC=90°-∠DCE=∠BCE.
∵CF平分∠DCE与DB交于点F.
∴∠DCF=∠ECF.
∴∠BFC=∠BCF.
∴BC=BF.
(2)∵四边形ABCD为矩形.FG∥DA与AB交于点G,CE⊥BD于E.
∴∠DBA=∠CDB,∠CED=∠BGF=90°.
∴△DEC∽△BGF.
∴GB:DE=BF:CD.
∴GB•CD=DE•BF.
∵BC=BF.
∴GB•DC=DE•BC