求积分∫x(x^2-3)^(1/2)dx

问题描述:

求积分∫x(x^2-3)^(1/2)dx

答:凑微分方法
∫ x(x^2-3)^(1/2) dx
=(1/2) ∫ (x^2-3)^(1/2) d(x^2-3)
=(1/2)*(2/3)*(x^2-3)^(3/2)+C
=(1/3)*(x^2-3)^(3/2)+C完全看不懂啊
第一步的前面那个x哪儿去了,1/2从哪儿来的,后面怎么变成d(x^2-3)了答:

因为:(x^2) '=2x
所以:2x dx =d(x^2)=d(x^2-3)
所以:x dx =(1/2) d(x^2-3)

∫ x(x^2-3)^(1/2) dx
=∫ (x^2-3)^(1/2) * (x dx)
=∫ (x^2-3)^(1/2) *(1/2) d(x^2-3)
=(1/2) ∫ (x^2-3)^(1/2)d(x^2-3)

把x^2-3看成整体就可以了