已知函数f(x)=e^(x-m)-x,其中m为常数,(1)若对任意x属于R,有f(x)大于等于0成立,求m的取值范围,速求,再加50
问题描述:
已知函数f(x)=e^(x-m)-x,其中m为常数,(1)若对任意x属于R,有f(x)大于等于0成立,求m的取值范围,速求,再加50
答
1.f'(x)=e^(x-m)-1
令f'(x)=0 x-m=0 x=m
x xm
y' - 0 +
y 减 极小值 增
x=m为f(x)的极小值点,f(x)在x=m处左减右增
fmin=f(m)=1-m>=0 m1
f'(x)=e^(x-m)-1
f'(x)=0 x=m
x xm
y' - 0 +
y 减 极小值 增
x=0 f(0)=e^(-m)>0
x=1 f(1)=e^(1-m)-1
m>1 1-m