对于正数x,规定f(x)=x/1+x,例如f(3)=3/1+3=3/4,f(1/3)=1/31+1/3=1/4, 计算f(1/2006)+f(1/2005)+f(1/2004)+…f(1/3)+f(1/2)+f(1)+f(1)+f(2)+f
问题描述:
对于正数x,规定f(x)=
,例如f(3)=x 1+x
=3 1+3
,f(3 4
)=1 3
=
1 3 1+
1 3
,1 4
计算f(
)+f(1 2006
)+f(1 2005
)+…f(1 2004
)+f(1 3
)+f(1)+f(1)+f(2)+f(3)+…+f(2004)+f(2005)+f(2006)=______. 1 2
答
原式=
+1 2007
+…+1 2006
+1 3
+1 2
+1 2
+2 3
+1 2006
=(2006 2007
+1 2007
)+(2006 2007
+1 2006
)+…+(2005 2006
+1 2
)=1×2006=2006.1 2