已知公差不为0的等差数列{an}的首项a1(a1∈R),且1/a1,1/a2,1/a4成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)对n∈N*,试比较1/a2+1/a22+1/a23+…+1/a2n与1/a1的大小.

问题描述:

已知公差不为0的等差数列{an}的首项a1(a1∈R),且

1
a1
1
a2
1
a4
成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对n∈N*,试比较
1
a2
+
1
a22
+
1
a23
+…+
1
a2n
1
a1
的大小.

(Ⅰ)设等差数列{an}的公差为d,由题意可知(1a2)2=1a1×1a4,即(a1+d)2=a1(a1+3d),从而a1d=d2,因为d≠0,所以d=a1,故an=nd=na1;(Ⅱ)记Tn=1a2+1a22+…+1a2n,由a2=2a1,所以Tn=1a2(1-1a2n)1-1a2=12a1(1-1(...