已知公差不为0的等差数列{an}的首项a1(a1∈R),且1/a1,1/a2,1/a4成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)对n∈N*,试比较1/a2+1/a22+1/a23+…+1/a2n与1/a1的大小.
问题描述:
已知公差不为0的等差数列{an}的首项a1(a1∈R),且
,1 a1
,1 a2
成等比数列.1 a4
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对n∈N*,试比较
+1 a2
+1 a22
+…+1 a23
与1 a2n
的大小.1 a1
答
(Ⅰ)设等差数列{an}的公差为d,由题意可知(1a2)2=1a1×1a4,即(a1+d)2=a1(a1+3d),从而a1d=d2,因为d≠0,所以d=a1,故an=nd=na1;(Ⅱ)记Tn=1a2+1a22+…+1a2n,由a2=2a1,所以Tn=1a2(1-1a2n)1-1a2=12a1(1-1(...