设A为n阶矩阵,A≠O且存在正整数k≧2,使A∧k=O.求证E-A可逆且(E-A)-¹=E+A+A²+…+A∧k-1

问题描述:

设A为n阶矩阵,A≠O且存在正整数k≧2,使A∧k=O.求证E-A可逆且(E-A)-¹=E+A+A²+…+A∧k-1

(E-A)(E+A+A^2+...+A^k-1)=E+A+A^2+...+A^k-1-A-A^2-...-A^k-1-A^k=E
所以E-A可逆,且其逆为E+A+A^2+...+A^k-1