设A为n阶矩阵,A≠O且存在正整数k≥2,使A的k次方=O,求证:E-A可逆,且(E-A)的逆矩阵=E+A+A的2次方+…
问题描述:
设A为n阶矩阵,A≠O且存在正整数k≥2,使A的k次方=O,求证:E-A可逆,且(E-A)的逆矩阵=E+A+A的2次方+…
+A的k-1次方
答
利用公式a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+...+b^(n-1)]即可,将a代为E,b代为A,则有E^n-A^n=(E-A)[E^(n-1)+E^(n-2)A+...+A^(n-1)],由于A^k=O,E^k=E,因此(E-A)[E+A+...+A^(n-1)]=E,根据可逆矩阵的定义,就有E-A可逆,且其逆等于E+A+...+A^(n-1)