β与α是等价无穷小的充要条件是:β=α+0(α),其中0(α)应该怎么理解?请举例说明,

问题描述:

β与α是等价无穷小的充要条件是:β=α+0(α),其中0(α)应该怎么理解?请举例说明,
x和sinx是等价无穷小 ,那么能用β=α+0(α)的形式表示一下吗?
"后面的0(x)叫做佩亚诺型余项,"我们没有学过(只说是x的高阶),那编者把他放在这里要我们怎么理解他呢?(孙兄的没看懂),那β=α+0(α)的形式“解释”一下x和sinx是等价无穷小总行吧?
我是不是可以这么理解:3x∧2=sinx+x,在中学阶段显然是错误的,但现在看在x趋向于零时这个等式是成立的

0(α)表示是α的高阶无穷小.不唯一.你既然知道无穷小的阶,想必你也学习了高等数学.那么0(α)你应该认识的呀!等价无穷小,就是说比值的极限等于一x和sinx是等价无穷小 一般写成sinx=x+0(x)至于0(x)不用特意写...